803 research outputs found

    Confirmation of Clinical Diagnosis in Requests for Prenatal Prediction of SMA Type I

    Get PDF
    The recent discovery of a major SMA-locus in the chromosomal region 5q makes it possible to carry out prenatal DNA studies in families in which a child with SMA type I has been born. Since direct mutation analysis is not yet possible, the reliability of prenatal prediction of SMA type I usually depends on the certainty of the clinical diagnosis in the index patient. Sixteen requests were received for DNA studies in couples who had had a previous child with SMA type I. After re-evaluation, the performance of prenatal diagnosis was rejected in four cases. Among the other twelve families prenatal DNA analysis of chorion villus biopsies has been carried out in three families. In all three cases the fetus had inherited the high-risk haplotypes from both parents, and the parents chose to terminate the pregnancy. An illustration of the prenatal DNA studies in one family is given. The importance of confirmation of the diagnosis SMA type I before performing DNA studies is emphasised

    Limited diagnostic accuracy and clinical impact of single-operator peroral cholangioscopy for indeterminate biliary strictures

    Get PDF
    BACKGROUND: Single-operator peroral cholangioscopy (sPOCS) is considered a valuable diagnostic modality for indeterminate biliary strictures. Nevertheless, studies show large variation in its characteristics and measures of diagnostic accuracy. Our aim was to estimate the diagnostic accuracy of sPOCS visual assessment and targeted biopsies for indeterminate biliary strictures. Additional aims were: estimation of the clinical impact of sPOCS and comparison of diagnostic accuracy with brush cytology. METHODS: A retrospective single-center study of adult patients who underwent sPOCS for indeterminate biliary strictures was performed. Diagnostic accuracy was defined as sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). The clinical impact of sPOCS was assessed by review of medical records, and classified according to its influence on patient management. RESULTS: 80 patients were included, with 40 % having primary sclerosing cholangitis (PSC). Prior ERCP was performed in 88 %, with removal of a biliary stent prior to sPOCS in 55 %. The sensitivity, specificity, PPV, and NPV for sPOCS visual impression and targeted biopsies were 64 %, 62 %, 41 %, and 84 %, and 15 %, 65 %, 75 %, and 69 %, respectively. The clinical impact of sPOCS was limited; outcome changed management in 17 % of patients. Sequential brush cytology sensitivity, specificity, PPV, and NPV were 47 %, 95 %, 80 %, and 83 %. CONCLUSIONS: The diagnostic accuracy of sPOCS for indeterminate biliary strictures was found to be inferior to brush cytology, with a low impact on patient management. These findings are obtained from a select patient population with a high prevalence of PSC and plastic stents in situ prior to sPOCS

    Soil fungal community composition correlates with site-specific abiotic factors, tree community structure, and forest age in regenerating tropical rainforests

    Get PDF
    Simple Summary:& nbsp;Regenerating forests represent over half of all tropical forests. While regeneration processes of trees and animal groups have been studied, there is surprisingly little information about how the diversity and community composition of fungi and other microorganisms change and what ecological roles play in tropical forest regeneration. In this study, we compared the diversity and community composition of trees and soil fungi among primary forests and regenerating forests of different ages in two sampling areas in southern Costa Rica. Our study shows that while forest age has a significant influence, environmental factors, such as mesoclimate and soil chemistry, have stronger effects on both fungal and tree communities. Moreover, we observed that the more dissimilar tree communities are between any two sites, the more dissimilar the composition of fungal communities. The results presented here contribute to a better understanding of the successional processes of tropical forests in different regions and inform land use and forest management strategies, including, but not limited to, conservation, restoration, and sustainable use.Successional dynamics of plants and animals during tropical forest regeneration have been thoroughly studied, while fungal compositional dynamics during tropical forest succession remain unknown, despite the crucial roles of fungi in ecological processes. We combined tree data and soil fungal DNA metabarcoding data to compare richness and community composition along secondary forest succession in Costa Rica and assessed the potential roles of abiotic factors influencing them. We found a strong coupling of tree and soil fungal community structure in wet tropical primary and regenerating secondary forests. Forest age, edaphic variables, and regional differences in climatic conditions all had significant effects on tree and fungal richness and community composition in all functional groups. Furthermore, we observed larger site-to-site compositional differences and greater influence of edaphic and climatic factors in secondary than in primary forests. The results suggest greater environmental heterogeneity and greater stochasticity in community assembly in the early stages of secondary forest succession and a certain convergence on a set of taxa with a competitive advantage in the more persisting environmental conditions in old-growth forests. Our work provides unprecedented insights into the successional dynamics of fungal communities during secondary tropical forest succession.Plant science

    The ghosts of forests past and future : deforestation and botanical sampling in the Brazilian Amazon

    Get PDF
    The remarkable biodiversity of the Brazilian Amazon is poorly documented and threatened by deforestation. When undocumented areas become deforested, in addition to losing the fauna and flora, we lose the opportunity to know which unique species had occupied a habitat. Here we quantify such knowledge loss by calculating how much of the Brazilian Amazon has been deforested and will likely be deforested until 2050 without having its tree flora sufficiently documented. To this end, we analysed 399 147 digital specimens of nearly 6000 tree species in relation to official deforestation statistics and future deforestation scenarios. We find that by 2017, 30% of all the localities where tree specimens had been collected were mostly deforested. Some 300 000 km(2)(12%; 485 25 x 25 km grid cells) of the Brazilian Amazon had been deforested by 2017, without having a single tree specimen recorded. An additional 250 000-900 000 km(2)of severely under-collected rainforest will likely become deforested by 2050. If future tree sampling is to cover this area, sampling effort has to increase two- to six-fold. Nearly 255 000 km(2)or 7% of rainforest in the Brazilian Amazon is easily accessible but does yet but remain under-collected. Our study highlights how progressing deforestation increases the risk of losing undocumented species of a hyper-diverse tree flora.Peer reviewe
    • 

    corecore